

Multi-Detector Analysis System MDAS William Hurt

Providing for safe, efficient disposition of DOE spent nuclear fuel

MDAS - a new approach to NDA

- MDAS technology
- Project status
- FY 2001 plans
- Future of MDAS

A multi-year project for developing a nondestructive assay technology

- Core research team of INEEL employees
- Research ongoing at INEEL, ORELA, IPNS
- This new system will satisfy several technical needs:
 - SNF characterization
 - RH-TRU waste characterization
 - Fissile material characterization

MDAS innovations are unique

- Fast coincidence
 - Timing is measured in nanoseconds
- Arrays of detectors
 - Work in high radiation fields
 - Suppress backgrounds
 - Handle high count rates
 - Provide better efficiency than large detector systems

MDAS innovations are unique (continued)

- Improved pulse shape discrimination (PSD)
 - Result in better PSD to detect neutrons
- Does not require special calibration standards

Multi-Detector Analysis System

- Fast coincidence
 - Within a given time window
 - About 50 ns window
 - Only coincident data are recorded by the system
 - Excellent for reducing random background
- Arrays of detectors
 - Gamma-ray coincidence (HpGe)
 - Neutron coincidence (Xylene)

Pulse Shape Discrimination

Pulse Shape Discrimination

Basic Fission Process

- Correlate prompt radiations from fission events
- Fission products of interest
 - Light and heavy fragments
 - Some number of neutrons
 - Gamma-ray cascades from excited fragments

Basic Fission Process (continued)

- Standard view from beta decay studies:
 - Predominately low energy (300-400 keV) gamma-rays
- Prompt fission studies:
 - Show strong gamma emissions between 1 and 5
 MeV

Fission and Decay Process

Prompt radiations

• 10-16 seconds

Fission products are

- two fragments
- zero to 10 neutrons
- several γ rays

Conservation Rules

ZF = ZH + ZLAF = AH + AL + xn A Conservation

Z Conservation

Fissioning I sotope	Light-mass Fragment Paired with ¹³⁴ Te					
	N=0	N=1	N=2	N=3	N=4	N=5
235 _U	¹⁰² Zr	¹⁰¹ Zr	¹⁰⁰ Zr	⁹⁹ Zr	⁹⁸ Zr	⁹⁷ Zr
238 _U	¹⁰⁵ Zr	¹⁰⁴ Zr	¹⁰³ Zr	¹⁰² Zr	¹⁰¹ Zr	¹⁰⁰ Zr
239 _{Pu}	¹⁰⁶ Mo	¹⁰⁵ Mo	¹⁰⁴ Mo	¹⁰³ Mo	¹⁰² Mo	¹⁰¹ Mo
240 _{Pu*}	¹⁰⁶ Mo	¹⁰⁵ Mo	¹⁰⁴ Mo	¹⁰³ Mo	¹⁰² Mo	¹⁰¹ Mo
241 _{Am}	¹⁰⁸ Tc	¹⁰⁷ Tc	¹⁰⁶ Tc	¹⁰⁵ Tc	¹⁰⁴ Tc	¹⁰³ Tc
242 _{Pu*}	¹⁰⁸ Mo	¹⁰⁷ Mo	¹⁰⁶ Mo	¹⁰⁵ Mo	¹⁰⁴ Mo	¹⁰³ Mo
252 _{Cf*}	¹¹⁸ Pd	¹¹⁷ Pd	¹¹⁶ Pd	¹¹⁵ Pd	¹¹⁴ Pd	¹¹³ Pd

Installation and operability testing of the neutron generator - February 2000

Primary shielding installed - July 2000

- Set up and calibrated detector arrays and other instrumentation
- Continued developing GUI software

Initiated measurement of SNF at IPNS

- Initiated measurement of SNF at IPNS
 - Encapsulated fuel sample
 - Inner tube filled with epoxy
 - 0.75-in. outer diameter stainless steel tube
 - One end welded closed

Initiated measurement of SNF at IPNS

Project Plans for FY 2001

- Focus on applied research at ORELA
 - Measurements on SNF/FH-TRU surrogates

Project Plans for FY 2001

- Focus on measurements at IPNS
 - Basic physics experiments
 - Continue measurement/data collection ²³³U, ²³⁵U, & ²³⁷ Np

Project Plans for FY 2001

- Focus on data analysis at INEEL
 - Fission fragment yields for isotopes of interest
 - Selection of partner pairs
 - Supplies data for algorithm development

MDAS is a key technology for SNF Programs

 Developing a means -- independent of process knowledge and item records -- to provide characterization information on SNF

MDAS is a key technology for SNF Programs (continued)

- Early results indicate MDAS can provide needed radiological information
 - Total fissile mass
 - Fissile isotopics
 - Specific fission products
 - Radionuclide content
- Using actual measurements

The Future of MDAS Technology

- Develop an NDA prototype
- Explore options for application
- Define potential customer base
- Engage commercial partners
- Modify and refine technology
- Deploy functional system